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FRACTIONAL STEP METHODS FOR REACTING SHOCK WAVES
Phillip Colellal, Andrew Majda?, and Victor Roytburd3

ABSTRACT, Fracticnal step schemes are the obvious
candidates for use in numerical modelling reacting
gases. Per each time step one should have the in-
gredients (fractional steps) performing the follow-
ing tasks: 1) integrating the equations of the
inviscid fluid dynmaics, 2) advancing the chemistry
equations, 3) resolving the dissipation mechanisms.
The numerical experiments with the inviscid frac-
tional step schemes based on the use of either the
Godunov or second order Godunov methods for the
fluid dynamics exhibit the following remarkable
behaviour: A) For very fine meshes, the Z-N-0 wave
B is completely resolved; B) For moderately fine
e meshes {i.e., meshes yielding very high resolution
in the nonreactive case), a numerical bifurcating
wave pattern emerges. The latter pattern is similar
to a precursor weak detonation. The explanation of
this phenomenon is given within the context of
simplified model equations.
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1. INTRODUCTION. In this paper we discuss several peculiar
theoretical and practical computational properties regarding
the structure and stability of reacting shock waves. The waves
which we study are defined by sclutions of the compressible
Navier-Stokes or compressible Euler equations for a mixture
composed of chemically reacting species in a single space dimen-
sion.
The compressible Navier-Stokes equations for a reacting gas
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are rather complex even in a single space variable, and it is
not surprising that simpler model equations for the high Mach
number regime have been suggested ([4]),[53.(7]1,[9]). These mac
systems have transparent analogues of many features of reactinc
gas equations (see [7],[5] for details).

One of the objectives of this paper is to use the predictic
of the simplified model system both for theoretical purposes ar
as a diagnostic for numerical modelling of the more complex
equations of reacting gas flow in the shock wave regime, The
authors advocate the use of this simpler model equations for
numerical code development for shock phenomena in reacting gas:
in much the same fashion as the Burgers equation has provided
both a wide class of simple test problems and the analysis of
difference schemes for the Burgers equation has influenced ca¢
development for nonreactive compressiblie gas flow.

A natural method for numerical simulation of reacting shac
waves is provided by fractional step schemes which allow for
separate treatment of all the basic physical mechanisms on eac
time step. We use fractional step schemes with three ingredie
per time step: 1) the inviscid hydrodynamics is solved by tr
Godunov or second order Godunov ([3]) methods; 2) the chemist
equation is advanced by explicit solution of the 0.0.E. for me
fraction given the temperature; 3) the diffusion equation is
solved via the Crank<Nicholson or backward Euler methods. Sux
a class of numerical schemes is one of the obvious candidates
for use in modelling reacting gases given the current develop
of methods for solving the compressible Euler equations,

One of the objectives of our work here is to assess the p
formance of the fractional step schemes for different mesh si

This paper is organized as follows: In section 2, we beg
by listing the equations of compressible reacting gas flow ar
describing the simplified model equations; then we describe t
numerical methods used in the paper. For the calculations ir

section 3, the shock layers are fully resolved. Our objectss
there are to study the structure and dynamic stability of re-
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acting shock tayers on such a length scale where diffusive
mechanisms are important.

Resclving detonation waves on viscous length scales is not a
practical option for a large scale reacting gas computation with
many wave interactions such as the problem of transition to de-
tonation., In section 4, we set all diffusion coefficients to be
zero and investigate the problem of computing the spiked Z-N-D
detonations of the inviscid reacting Euler equations on coarser
meshes. [t turns out that for moderately fine meshes (i.e.,
meshes yielding very high resolution is the nonreactive case),
the numerical experiments with the inviscid fractional step
schemes with either the Godunov or second order Godunov method
exhibit a nonphysical bifurcating wave pattern with a structure
similiar to a weak detonation wave, It is worth noting that
qualitatively similar nonphysical wave patterns were reported by
other researches (see [8]).

Finally, in section 5, we give a theoretical explanation for
the computational phenomena on coarse meshes discussed in
section 4,

2, PRELIMINARIES.

The Compressible Navier-Stokes Equations for a Reacting Mixture.
We assume a standard simplified form for the reacting mixture
throughout this paper. Thus, there are only two species
present, unburnt gas and burnt gas, and we postulate that the

unburnt gas is converted to burnt gas by a one-step irreversible
chemical reaction. Under the above hypothesis the compressible

Navier-Stokes equations for the reacting mixture ([10]) are the

system of four equations,

o, * (pu), =0

2 =
(Du)t + (pu ¢ p) = wu

(2.1)

(pF)y + (ouE + up), = (w(82),), + ¢ (3T,),
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(pZ), + (pul), = -pK(T)Z + (DL}

where p 1is the density, u s the fluid velocity, £ 1is the
total specific energy, and Z s the mass fraction of unburnt
gas. The total specific energy, E has the form,

E=e+qoz+_gﬁ (2.2)

with e the specific internal energy and q0 the amount of
heat released by the given chemical reaction. For the assumed
ideal gas mixture {with the same y-gas laws), the pressure angd
temperature are defined respectively by the formulae p = (y-1jse
and T = p/pR x M with R, Boltzmann's gas constant, M the
molecular weight, <, the specific heat, and vy defined by
cp(v-l) = R. The factor K(T) 1in (2.1) is strongly dependent
on temperature and has the form

K(T) = Kge(T) (2.3)

with Ko the reaction rate. The function ¢(T) typically has
the Arrhenius form,

$(T) = e MT

or for computational purposes, the approximation for large A
given by ignition temperature kinetics,
1, T5 T
#(T) =

with T{ the ignition temperature.

The coefficients wu, X, and D 1in (2.1) are coefficients
of viscosity, heat conduction, and species diffusion respective-
ly. The compressible Euler equations for the reacting mixture
are the special case of (2.1) with ¢y = x = D = Q.

The Simplified Model Equations., The simplified model equatons
for the shock wave regime derived through asymptotic limits from
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the system in (2.1) (see [9]) have the form

u, + (u2/2 - qOZ)x = Bu

t XX

(2.4)
ZX = Ke(u)Z

where u is an asymptotic lumped variable with some features of
pressure or temperature, 2 is the mass fraction of burnt gas,
N > 0 is the heat release, 8 » 0 is a lumped diffuston coeffi-
cient, K 1is the reaction rate, and ¢{u) has a typical form as
described below {2.3). The reader should not be confused by the
appearance of Z on the left hand side of (2.4) rather than Z,.
The coordinate x 1in (2.4) is not the space coordinate but is de-
termined through the asymptotics as a scaled space-time coordinate
representing distance to the reaction zone; the x-differentiation

occurs because Z in {2.4) is convected at the much slower fluid
velocity rather than the much faster reacting shock speed (see [9]
for the details). With these interpretations the equations in
{(2.4) become a well-posed problem by prescribing initial data
ug(x) for wu(x,t) at time t = 0 and prescribing the value of
Z(x,t) as x + » (corresponding to finite values ahead of the
reaction zone}, i.e., Zg(t) should be specified with the boun-
dary condition

2,(t) = lim Z(x,t) (2.5)

X+

In this paper, we always set Zg(t) = 1 for simplicity.

of

The Numerical Methods. Now we describe the basic fractional step

numerical method used in solving the model equation from (2.4).
We set w = (u,Z)., Given mesh values w? = (u?. Z?).‘ in the

. . . h .
first fractional step we determine ug"'l/2 from u; by using a

finite difference approximation to the inviscid Burgers equation

u, + (u2/2)x =0 .

In our computations we use Godunov's method or a second order
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Godunov method ([3]) as the finite difference approximation. In
the next fractional step, we determine Z?*l as the solution
of the 0.D.E.

Zx = K¢{u)l
with u given approximately by ug*‘/2~ Wwe march from positive

values of x to negative values of x and use the boundary
conditions Z0 z | on the right end of the large interval where

. . . N+1/2
the calculations are carried out. Given the values of u} 1/ .

the above 0.D.E. is linear in 7 and we solve it by the trape-
zoidal approximations of the integral in the exact solution
formula to derive

271 = 2§ exp (SKXe(u})7?) ¢ 0(]TRN)) (228)

with Z?*l £ 1 for j large enough. Finally, in the third sweep

of the fractional step method we solve the diffusion equation
- = = 2.7
u, - Bu = Q= qOKb(u)Z . (2.7)

The linear diffusion equation on the left-hand side of (2.7} is
discretized by using either the backward Euler or Crank-Nicholson

methods with initial data u?*llz The value of u?*l is then de-

termined by solving this inhomogeneous difference equation where
the values for (u?+‘/2’2?+1] are used in the approximation of the

forcing function on the extreme right hand side of (2.7) at time
level (N + 1)at. This completes the description of the basic

fractional step method for the simplified model equation. Obvi-
ocusly, the only stability condition needed in the method is the

C-F-L condition,
AtiuNl ¢ 1
AX

required in the first sweep.
The fractional step algorithms, which we use for the reacting

compressible Navier-Stokes equations are organized similarly.
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The same three basic fractional steps are implemented to advance
the solution to the next time level. We refer the reader to [2]
for details.

3. THE STRUCTURE OF REACTING VISCOUS SHOCKS.

Wave Structure for the Simplified Model System. We begin with a
brief summary of the structure of the travelling waves for the
model system {2.4) (the details can be found in [7]). Consider

a preshock constant state wg = (up, 1) in chemical equilibrium so
that ¢(ug) = 0. We study travelling wave solutions of {2.4) with
the given preshock state wgp and a fixed speed s. We seek

special solutions of (2.4) with the form w = w (£), where
E = (x-st)/B, so that

Tim w(E) = (ups 1) 5 Vim w(g) o (v . 0) (3.1)

[ 5-»-‘»
where u needs to be determined. With Z = qOZ and KO = 8K,
substitution of the above form of w into {2.4) leads to the
autonomous system of 2 nonlinear 0.D.E.'s,

u''=y2 -su-2+0C0, 1'= Koo(u}z . (3.2)

where the integration constant ( 1is determined by wR., The

phase portrait for system (3.2) is depicted in Figure 1.

The saddle point (uL*, 0) and the nodal point (u *,0) are the

only timiting values for the travelling wave solutions when

E » -m, They correspond to the weak and strong detonation waves

propagating with speed s and determined by the Chapman-Jougent

theory. Thus, for a fixed positive value of KO = BK, there is a

critical heat release, ege SO that

A) For 9 > Qe @ strong detonation travelling wave profile
with speed s exists connecting (up, 1) to (u *, 0).

B) For q0 = qCR’ a weak detonation travelling wave with speed s
exists connecting (up, 1) to (ULt, 0).

C) For 9 < Qcge MO combustion wave moving with speed § is
possible.
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Figure 1.

A similar behavior occurs if the heat release is fixed and K0
is varied: strong detonations for KO < KCR‘ no connecting pro-
files for KO > KCR (see [7]). We make this remark because the
reaction rate is the quantity actually varied in some calcula-
tions reported below.

Graphs of the typical wave profiles as the heat release is

varied, are presented in Figure 2.

u

()

Fig. 2. Shape of travelling wave profiles.
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The question of dynamical stability of these profiles was ad-
dressed in [2]. In numerical experiments the special initial

data,
UR’ x> 0 qO, x>0

uo(x) = , ZO(X) = (3.3)

ULt. x < 0 0, x <0

with 95 > egs evolve to the strong detonation wave moving with
speed s. (Note that the data in (3.3) define an inviscid
strong detonation of speed s). Thus, numerical calculations of
[2] demonstrate the dynamic stability of strong detonation waves
in the model.

0f special importance for us is the question, what happens
when 95 is below the critical level, qo < qCR‘ so that no travel-
ling wave profile moving at speed s occurs. In this case, the
“shock tube® initial data (3.3) evolve into the following bifur-
cating wave pattern: An approximately self-similar wave pattern
given by the weak detonation moving with speed s' , s' > s ,
followed by a fluid dynamics viscous shock moving with the speed
s* ¢ 5. This wave pattern is illustrated by the graphs in Figure
3. The graph of Z included in the last diagram shows that the

bl
2
b ]
-2
8
-
]
R
s
8
‘g0 -400 -200 000 2,00 ~L00 -200 000 290 43  -400 -200 007 240 4%

Fig. 3, The bifurcating wave pattern at 160, 320, and 400
time steps.

chemical energy is released in the precursor wave. Note that

the graphs are presented in the coordinate system moving
with speed s.
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MWave Structure for the Reacting Compressible Navier-Stokes
Equations. The theory of combustion wave profiles for the reacting
gas flow equations from (2.1} is considerably less complete than
that for the model equations. Nevertheless, Gardner [6] has
recently proved the existence of viscous strong (and weak) deton-
ations for varying (and exceptional) values of the heat release
and wave speed. One consequence of the results in [6) is a
scenario for the wave structure with varying heat release qualita-
tively similar to that discussed above for the model equations;

in fact, his method of proof involves deformation to the travel-
ling waves of the qualitative model from [7]. This fact both
provides a partial rigorous justification for the model and also
suggests that similar dynamically stable wave structures, as des-
cribed earlier in this section for the model, would also occur for
the reacting compressible Navier-Stokes equations. The numerical
experiments that we discuss in the remainder of this section,
confirm this conjectured behavior.

We use the fractional step method with the second order
Godunov method for the inviscid hydrodynamics sweep. We intro-
duced the rescale variable Z = qpl rather than 1 and the initial
data was always taken as the piecewise constant initial data
defining a C-J {Chapman-Jouguet) detonation; i.e., the initial
data for (p.o,u, Z) had the form

(PO-DO-O:QO) »* X ) 0
(Pl-ﬂl.ul,o) ’ x ¢ 0

where given the preshock state for x > 0, the post-shock state
defined for x < 0 satisfied the Rankine-Hugoniot relations defin-
ing a C-J detonation. The numerical calculations were performed
on a finite interval with Dirichlet boundary conditions, and to
avoid the computational expense of a very long interval, the
solution was allowed to run until the wave came within a fixed
number of zones from the right edge of the grid; then the
solution was shifted from the right to the left to keep it fixed
on the interval. Our graphical displays retain this computa~
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tional artifact and focus on the fastest moving wave pattern,

In this section, diffusive length scales are completely
resolved computationally, but for emphasis we will work in dimen-
sional (CGS) units which are typical ones for a viscous reacting
shock layer, The detonation waves which we study have fairly
small heat release and are modeled on initial data for the pre-
snock state corresponding to 25% ozone and 75% oxygen at roughly
room temperature in the ozone decomposition (-J detonation,

The first series of calculations is concerned with the emer-
gence of a strong detonation wave from the C-J initial data
described above. The pressure and chemical energy profiles of
the solution are given in Figure 4, This solution is numerically
steady in a reference frame moving with the wave speed.

(&1

- - - - -

- -
i i L B B
s 3 owan oacd 83

Fig. 4. Dynamically emerging (-J detonation wave.

(22 3

|

-
a

114

For the second series of dynamic calculations, we increased
{somewhat arbitrarilly) the reaction rate fivefold. All other
parameters and the initial (-J data were kept fixed. By analogy
with the model system, one might anticipate a bifurcation wave
pattern if the reaction prefactor KO and the heat release qo
satisfy 4, < qCR(KD)‘ The time series of solutions is presented
in Figure 5, where only the pressure and chemical energy plots are

displayed. As is apparent from the chemical energy plot, all the

chemical energy is released in the precursor weak detonation wave
as anticipated in the model system. The slower moving trailing
wave profile is an ardinary fluid dynamic shock.
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Fig. 5. Dynamically emerging precursor weak detonation
at 218 and 424 time steps.

The calculations described above were performed with the space
resolutions ax = 25A (Figure 4) and Ax = 15A {Figure 5). With
these mesh sizes the shocks and the reaction zones are fully
resolved (~ 50 meshpoints in the shocks, ~ 200 meshpoints in the
reaction zones). We remark that the same wave structures emerged

under mesh refinements.

4. INVISCID CALCULATIONS.

The computational meshes used in the calculations from section
3 are several orders of magnitude finer than those that could be
used in a typical large scale computing problem. On much larger
spatial scales the effects of diffusion are ignored so in this

section we report on calculations with the inviscid reacting com-
pressible Euler equations. Since it is an interesting problem to

develop numerical methods which can capture the significantly
higher pressure peaks which occur in the structure of Z-N-D waves,
we assess the performance of the inviscid fractional step methods
in such a calculation. We note that any algorithm based on the
C-J theory alone {such as [1]) automatica11y will ignore the
1-N-D pressure spike in the travelling wave structure no matter
how fine a mesh is used.

For comparison, we used as initial data the same (-J detona-
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tion wave which we used previously in section 3. In the calcula-
tions reported below we always used 300 mesh points while the mesh
size and the computational domain were changing. We took Ax = aR
where a is varied from 0.1 to 105. The constant Ry = S00A is a
characteristic length scale which measures the internal structure
of the reaction zone whose width is roughly 30 Ro.
The graphs in Figure 6 display the values of the pressure and
chemical energy for the travelling waves that emerged from these

’ tons

Koo = = s © = = RN
3 1111 $i3181
rarssont - . N : CnfwiCai CERgy

Fig. 6a. &ax = .1 Ro

calculations with the C-J initial data.

For ax = .1 RD’ the reaction zone was completely resolved and
the expected Z-N-D profile was computed by etther method. Already
at ax = 10 RO’ neither numerical method has any pressure peak
higher than 8 atm. On this mesh the Godunov scheme already clearly
exhibits a numerical bifurcating weak detonation pattern
qualitatively similar to the one described in section 3 with all
chemical energy released too soon in the precursor numerical weak
detonation wave, The second order Godunov method also exhibits an
incorrect wave pattern on this mesh. On a mesh with Ax = 102 R
both methods exhibited totally non-physical bifurcating wave
patterns with precursor numerical weak detonations. On even

ol
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coarser meshes, the same approximately self similar non-physical
discrete wave pattern emerged as indicated by a comparison of the
graphs in Figure 64 with ax = 105 Ry and Figure 6c with ax = 102
Ry, We recall that the mesh with ax = 10° Ry has 300 mesh points
in a region only 1.5 meters long. Although we do not report the
detailed time history here for these calculations, the numerical
weak detonation wave that emerges is alwayS moving at the speed of
one mesh point per time step.

A similar computational phenomena cccurred for the fractional
step schemes for the model system with the Godunov or second order
Godunov methods,

5. DISCRETE WEAK DETONATIONS.

The calculations from section 4 on coarser meshes with the
Godunov fractional step schemes yield a bifurcating numerical pat-
tern with a discrete weak detonation wave as a precursor. These
wave patterns qualitatively resemble the analytic bifurcating wave
structures documented as stable exact solutions of the reacting
Navier-Stokes equations in section 3. However, the wave patterns
from section 4 are purely a numerical artifact sfnce the numerical
solution converged to the expected Z-N-D detonation under further
mesh refinement,

Here we provide a theoretical explanation for the numerical
results presented in section 4, We work within the context of
the simplified model and derive a class of nonphysical discrete
traveling waves for the basic inviscid fractional step scheme
introduced in section 2, These exact solutions of the difference
equations will be numerical weak detonations moving at the speed,
s' = Ax/at, i.e., one grid spacing per time step, as observed
in the calculations from section 4. The (numerical) stability of
such discrete weak detonations has been demonstrated in the calcu-
Yations reported in section 4 for sufficiently coarse meshes.

We consider the problem of computing the Z-N-D detonation
dynamically as a solution of the system
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2 R
u * (ué/2 - qol)x = 0
{5.1)

Zx = Ké(u)l

with initial data given by a C-J detonation wave for the fixed
wave speed § , i.e., with the initial data having the form (3.3).
These fnitial data should satisfy the reacting Hugoniot equation

H(UL‘)URDS) = qO

where H{u,v,s) = s{u-v)={u?-v2)/2 is the Hugoniot function.

We are interested in wave solutions of a difference version
of (5.1) travelling with the speed s' = Ax/At, First, we note
that s' should be larger than s. Indeed, the C-F-L stability
condition requires (At/Ax)uL* =a<l, f.e., s')> uL*. On the
other hand, uL* > 5 > Upe It yields s' > s. Now it is easily

seen that since s' > s, the quadratic equation
H(u.uR.s‘) - q0 =0
has two solutions UL* and UL*' and that

- ' *
UL >s' > u > UL’ >up,

The main result of this section is concerned with the exis-
tence of a travelling wave solution ug = (u?. Z?} of the difer-

ence scheme approximating (5.1) which has these properties:
A) It travels with speed s', i.e.,

N N-1 .. 0 .

wj =%yt . 'j-k for all N > 0 and j. (5.2)

B) It approximates an inviscid weak detonation wave which con-
nects the states (uR.l) and (U, *, 0):

o _ . ) 1im 0 _ *
v = (uR.l). i> 0 oom wj = {UL ,0). {5.3)

Such solutions of the numerical scheme define the descrete weak
detonations maving at mesh speed which were observed

computationally in the last section,
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0

UR.
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For simplicity we assume that the initial data (3.4) satisfy
Up > 0. In this case the wave speeds are positive and Godunov's
scheme reduces to the upwind scheme.

PROPOSITION (Existence of Numerical Weak Detonations). For the
inviscid fractional step scheme based on the upwind scheme,
explicit nonphysical travelling waves satisfying (5.2) and {5.3)
exist under the following conditions on heat release qo, reac-
tion rate K, and mesh spacing Ax:

A) For ignition temperature kinetics with ignition temperature u
satisfying T > up, nonphysical discrete travelling waves with
a monotone profile exist provided the two explicit inequalities

- kax
U<y, and H(i.uR’s ) < qo[l -e 2) (5.4)

are satisfied.

B) For a general kinetics structure function ¢(u) satisfying
‘(“R) = 0 and ¢(u) > 0 for ug < u, a numerical weak detonation

profile exists provided that there is a solut{on up with
ug < Uy 4 UL' to the nonlinear algebraic equation
- KAX (u )
‘7"‘ 0
Rlugaupss') + 4 € = q,- (5.5)

The proposition is proved by the effective construction of

the solution of the equation

w} « w?’l (5.6)
where wl is a nonlinear function of w0 given by the marching
formulas of the difference scheme. Equation (5.6} is solved
recursively, wj = {ug,1) for j > 1, wj is generated from wj.} for
J € 0. The solvability of {5.6) is guaranteed by the conditions
{5.4) or (5.5). MWe refer the reader to [2] for the detailed
proof.

In conclusion we note that any of the quantitative algebraic
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conditions in (5.4) or (5.5) is satisfied if either
A) K' = Kax is large enough or

B) the heat release a9 is large engugh for a fixed mesh.

In fact K' for these inviscid methods for reacting gas plays an
analogous role as the mesh Reynolds number in viscous incompres-
sible flow. The behavior of the numerical method for K' large
for the reacting compressible Euler equations mimics the behavior
for high reaction rate Kg documented in section 3 for the
reacting compressible Navier-Stokes equations.

The explicit conditions for the existence of numerical weak
detonations provide a quantitative guideline for the validity of
the basic fractional step schemes in coarser mesh calculations.
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